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Abstract—This paper presents posterior Cramér-Rao lower
bounds (PCRLB) for extended target tracking (ETT) when
the extent states of the targets are represented with random
matrices. PCRLB recursions are derived for kinematic and extent
states taking complicated expectations involving Wishart and
inverse Wishart distributions. For some analytically intractable
expectations, Monte Carlo integration is used. The bounds for the
semi-major and minor axes of the extent ellipsoid are obtained
as well as those for the extent matrix elements. The resulting
bounds are compared on simulations with the performance of a
state-of-the-art ETT algorithm employing random matrices for
extent estimation.

I. INTRODUCTION

In conventional target tracking using radars, tracking filters
are developed with point target assumption. This means that,
in these algorithms, it is implicitly assumed that the radar
resolution is low compared to target extent. On the other hand,
the improvements in radar technology has already rendered
this assumption invalid. Nowadays, increased radar resolution
usually leads to multiple measurements for a single target in a
single scan. The number and the spread of the measurements
generated depend on the target’s size. This new information
obtained via multiple measurements enables the estimation of
target’s extent along with the kinematic state. This research
area of target tracking is known as extended target tracking
(ETT).

In the literature, there exist different ways of modeling the
target extent. In one of the earliest examples, Salmond [1]
et al. takes care of the target extent by trying to track the
measurement sources on the target assuming that they are
stationary over the extent. This might not be possible in
many practical cases since the locations of the measurement
sources on the target may change rather too quickly for
obtaining good quality tracks. To overcome this problem, more
recent approaches model the measurement sources as random
samples from a distribution whose parameters are of interest.
This approach was first proposed in [2], [3] where the extent
is modeled with a spatial distribution. In [4] Koch proposed
a Bayesian approach modeling the measurement sources on
the target to be normally distributed where the covariance of
the Gaussian measurement likelihood is related to the target
extent which is represented by an inverse Wishart distributed
positive definite matrix. This approach, called as random
matrices, has spurred a lot of interest in tracking community

recently [5]–[10]. Baum and Hanebeck combined the idea
of spatial distributions with set theory in [11] to propose
the so called random hypersurface modeling which allows
tracking of (almost) arbitrary shaped objects. A comparison
of random hypersurface and random matrix methodologies is
given in [12].

The tracking methods/filters used in the scope of ETT to
obtain kinematic and extent estimates vary in a large range.
Conventional methods such as (extended/unscented) Kalman
filters [2], [13]; particle filters [2], [14], [15] as well as track
before detect methods [16] are used for single ETT. A survey
of Bayesian sequential Monte Carlo methods used in ETT is
given in [17]. Multiple target trackers utilized for ETT are
(Cardinalized) probability hypothesis density filters [18]–[24],
generalized labelled multi-Bernoulli filter [25] and probabilis-
tic multiple hypothesis trackers [26], [27].

In contrast to the variety of ETT methods, the literature
on performance limits of ETT algorithms is restricted to
only few works. Ristic and Salmond consider an ellipsoidal
target having a constant angle between its major axis and
target-observer line of sight in [13] where posterior Cramér-
Rao lower bounds (PCRLBs) are obtained for making a
performance comparison of extended/unscented Kalman filter.
Xu and Li propose a hybrid CRLB in [28] for extended
targets with rectangular shape whose state vectors contain
both deterministic parameters and random kinematic variables.
In [29] it is shown that PCRLB for ETT is always lower than
PCRLB for conventional point target tracking on a generic
ETT model and the results are illustrated on a target with
elliptical extent whose parameters are to be estimated. In [30],
the study [29] is expanded by considering spatial distributions
for modeling the target extent. Meng et al. investigate the effect
of false alarms and missed detections on the PCRLB in [31].

None of the aforementioned studies on the performance lim-
its of the ETT algorithms uses the random matrix framework.
In this study, we determine the performance limits for ETT
where the target extent is modeled using random matrices. For
this purpose, we first obtain the Fisher information available in
the measurements about the kinematic and extent states. Then,
we derive the PCRLB recursions for the kinematic states,
entries of the extent matrix and its semi-major and semi-minor
axes. The resulting bounds are compared to RMS errors of
the random matrix based ETT filter of Feldmann et al. [5] on



simulations.
The organization of the paper is given as follows. The

problem formulation and the description of the ETT filter of
Feldmann et al. [5] are presented in Section II. In Section III,
we calculate the Fisher information matrix (FIM) for ETT.
The FIM derived in Section III is used in obtaining PCRLB
recursions which are the main results of the current work
and given in Section IV. PCRLB values for the semi-major
and minor axis of the target extent are derived in Section V.
In Section VI simulation results comparing the ETT filter
performance to the proposed PCRLBs are illustrated. The
paper ends with the conclusions in Section VII.

II. PROBLEM FORMULATION

We consider the following extended target model proposed
in [5] by Feldmann et al. The state of the extended target is
composed of the kinematic state xk ∈ Rn (at time k) and the
extent state Xk ∈ Rd×d (at time k) where Xk is a positive
definite matrix representing the ellipsoidal target extent. It is
assumed that the set of measurements Yk , {y1

k, · · · , y
mk

k }
is collected at time k about the target and yik ∈ Rd, i =
1, . . . ,mk, are distributed as

yik ∼ N (yik;Hxk, sXk +R) (1)

where
• H ∈ Rd×n is the measurement matrix;
• s ∈ R>0 is an extent scaling factor;
• R is the measurement covariance;
• the notation N (x; x̄, P ) denotes the Gaussian distribution

for the random variable x with mean x̄ and covariance
P .

The number of measurements mk ∼ pm(·) is assumed to
be random and independent of both the kinematic and extent
states. The measurements yik, i = 1, . . . ,mk are assumed to
be independent and identically distributed, hence, we have the
following likelihood function.

p(Yk|xk, Xk) = pm(mk)

mk∏
i=1

N (yik;Hxk, sXk +R). (2)

The following state space model is assumed about the kine-
matic state xk.

xk+1 = f(xk) + wk+1 (3)

where f(·) is a differentiable, in general, nonlinear function
and wk ∼ N (wk; 0, Q) is the white process noise. The initial
kinematic state x0 is random and distributed as x0 ∼ px0(·).
With the model (3), we have the following kinematic state
transition density.

xk+1 ∼ p(xk+1|xk) , N (xk+1; f(xk), Q). (4)

The extent state is assumed to be independent of the kinematic
state with the transition model given as

Xk+1 ∼ p(Xk+1|Xk) ,W
(
Xk+1;nk+1,

Xk

nk+1

)
(5)

where the notation W(X,w,W ) denotes the Wishart distri-
bution for the random matrix X with degrees of freedom w
and scale matrix W . The initial extent state X0 is random and
distributed as X0 ∼ pX0

(·).
The aim of the current study is to obtain the posterior CRLB

for the kinematic and extent states described with the model
given above.

A. ETT Filter of Feldmann et al.

In [5], the posterior probability density function (pdf) of xk
and Xk is approximated as

p(xk, Xk|Y0:k) ≈ N (xk;xk|k, Pk|k)IW(Xk; vk|k, Vk|k) (6)

where the notation IW(X; v, V ) denotes the inverse Wishart
distribution for the random matrix X with degrees of freedom
v and scale matrix V . The following Bayesian updates are
proposed for the parameters xk|k, Pk|k, vk|k and Vk|k in [5].
Prediction Update:

xk+1|k = Fxk|k (7a)

Pk+1|k = FPk|kF
T +Q (7b)

Xk+1|k = Xk|k (7c)
αk+1|k = 2 + exp(−T/τ)(αk|k − 2) (7d)

where F is the state transition matrix of the state dynamics
(which is assumed to be linear); αk|k , vk|k − d − 1; the
parameter τ is a forgetting time-constant for the extent; T is
the sampling time.
Measurement Update:

xk+1|k+1 = xk+1|k +Kk+1|k(ȳk+1 −Hxk+1|k) (8a)

Pk+1|k+1 = Pk+1|k −Kk+1|kSk+1|kK
T
k+1|k (8b)

Xk+1|k+1 =
1

αk+1|k+1

(
αk+1|kXk+1|k + N̂k+1|k + Ŷk+1|k

)
αk+1|k+1 = αk+1|k + nk+1 (8c)

where

ȳk+1 =
1

mk+1

mk+1∑
i=1

yik+1, (9a)

Sk+1|k = HPk+1|kH
T +

Yk+1|k

mk+1
, (9b)

Kk+1|k = Pk+1|kH
TS−1

k+1|k, (9c)

Yk+1|k = sXk+1|k +R, (9d)

Ȳk+1 =

mk+1∑
i=1

(
yik+1 − ȳk+1

) (
yik+1 − ȳk+1

)T
, (9e)

Nk+1|k =
(
ȳk+1 −Hxk+1|k

) (
ȳk+1 −Hxk+1|k

)T
, (9f)

N̂k+1|k = X
1/2
k+1|kS

−1/2
k+1|kNk+1|k

(
S

−1/2
k+1|k

)T (
X

1/2
k+1|k

)T
,

Ŷk+1|k = X
1/2
k+1|kY

−1/2
k+1|kȲk+1

(
Y

−1/2
k+1|k

)T (
X

1/2
k+1|k

)T
. (9g)

We compare the PCRLB results obtained in this work with
the performance of the ETT filter described above in the
simulations.



III. FIM FOR EXTENDED TARGET TRACKING

In this section, as an intermediate result, we calculate the
Fisher information contained in the measurement set Yk about
the kinematic and extent states, xk and Xk. For this purpose,
we constrain the model proposed in Section II to 2D. In
other words, we assume that the measurements yik are x − y
measurements, i.e., d = 2.

We first define the augmented state ξk as

ξk ,

[
ξxk
ξXk

]
(10)

where

ξxk ,xk, (11)

ξXk ,
[

[Xk]11 [Xk]12 [Xk]22

]T
. (12)

Here, the notation [·]ij denotes the element of the argument
matrix corresponding to the ith row and the jth column. In the
definition of ξXk in (12), the entry [Xk]21 is omitted, because
the extent matrix Xk is symmetric, i.e., [Xk]12 = [Xk]21. The
likelihood function p(Yk|ξk) can be written by making the
following substitutions into (2).

xk ←ξxk , (13)

Xk ←
[

[ξXk ]1 [ξXk ]2
[ξXk ]2 [ξXk ]3

]
, (14)

where the notation [·]i denotes the ith element of the argument
vector. The Fisher information matrix (FIM), denoted by Ik,
is defined as

Ik , E
[
−∆ξk

ξk
log p(Yk|ξk)

]
. (15)

An equivalent expression, which involves only first-order
derivatives, is given as follows.

Ik ,E
[
∇ξk log p(Yk|ξk)∇Tξk log p(Yk|ξk)

]
(16)

=E
[
SξkS

T
ξk

]
. (17)

where the vector Sξk is called as the score function and defined
as follows.

Sξk , ∇ξk log p(Yk|ξk). (18)

A. Calculation of the Score Function

In this section, we drop the subscripts k for brevity. The
score function Sξ can be written as

Sξ =

[
Sξx

SξX

]
(19)

where

Sξx ,∇ξx log p(Y |ξ), (20)

SξX ,∇ξX log p(Y |ξ). (21)

Since we have ξx = x, we can write the kinematic score
function Sξx as

Sξx = ∇x log p(Yk|x,X) , Sx. (22)

Noting the definition of ξX in (12), the extent score function
SξX is given as follows.

SξX =

 [SX ]11

[SX ]12 + [SX ]21

[SX ]22

 , (23)

where we have

SX ,∇X log p(Y |x,X). (24)

Note that the score SξX is a vector of size 3 which contains
the derivatives of the log-likelihood log p(Y |x,X) with respect
to the 3 unique elements of the matrix X , i.e., with respect
to [X]11, [X]12 and [X]22 under the symmetry constraint
for X , i.e., [X]21 = [X]12. On the other hand, the score
SX is a matrix of size 2 × 2 which is composed of the
partial derivatives of the log-likelihood log p(Y |x,X) with
respect to the elements of the matrix X (without the symmetry
constraint).

The score functions Sx and SX can be found as follows
(See [32, Section 3.2.1] for a detailed derivation).

Sx =HT (sX +R)−1
m∑
p=1

(yp −Hx), (25)

SX =
s

2
(sX +R)−1

(
m∑
p=1

(yp −Hx)(yp −Hx)T

)
× (sX +R)−1 − 0.5sm(sX +R)−1. (26)

B. Fisher Information Matrix

The FIM Ik given in (17) can be expressed in terms of the
kinematic and extent score functions Sx and SξX as follows.

Ik =

 E
[
SxS

T
x

]
E
[
SxS

T
ξX

]
E
[
SξXS

T
x

]
E
[
SξXS

T
ξX

]  . (27)

The blocks of the FIM can be computed as given below
(See [32, Section 3.2.2] for a detailed derivation).

E[SxS
T
x ] = m̄HT (sX +R)−1H, (28a)

E
[
SxS

T
ξX

]
= 0, (28b)

E
[
SξXS

T
x

]
= 0 (28c)

where m̄ is the expected value of the number of measurements.
The lower-right block of the FIM is given as

E
[
SξXS

T
ξX

]
=


d11,11 d11,12 + d11,21 d11,22

d12,11

+d21,11

d12,12 + d12,21

+d21,12 + d21,21

d12,22

+d21,22

d22,11 d22,12 + d22,21 d22,22


(28d)

where the terms dij,kl, which are defined as

dij,kl , E [[SX ]ij [SX ]kl] , (29)



can be calculated as follows.

dij,kl =
s2

4
m̄
([

(sX +R)−1
]
ik

[
(sX +R)−1

]
jl

+
[
(sX +R)−1

]
il

[
(sX +R)−1

]
kj

)
. (30)

It is important to emphasize that the resulting FIM, i.e., Ik
in (27), is a block diagonal matrix.

IV. PCRLB RECURSION

In this section we give PCRLB recursions for the kinematic
and extent states using the approach proposed by Tichavsky
et al. in [33]. Since

• the initial kinematic and extent states are assumed inde-
pendent in Section II;

• the kinematic and extent state transitions are assumed
independent in Section II;

• the FIM calculated in III is block-diagonal,

it can be seen that the recursions of the PCRLB for kine-
matic and extent states are independent. These recursions are
described separately in the following.

A. PCRLB Recursion for the Kinematic State

The PCRLB for the kinematic state is shown as J̃ xk and is
given as

J̃ xk =
(
Ĩxk
)−1

(31)

where the Bayesian FIM Ĩxk for the kinematic state can be
calculated using the following recursion.

Ĩx0 =E
[
∇x0

log px0
(x0)∇Tx0

log px0
(x0)

]
, (32a)

Ĩxk+1 =Dx,22
k+1 + E

[
I11
k+1(xk+1, Xk+1)

]
−Dx,21

k+1

(
Ĩxk +Dx,11

k+1

)−1

Dx,12
k+1 , (32b)

where I11
k+1 , E[SxS

T
x ] is the FIM calculated for the

kinematic state given in (28a) and

Dx,11
k+1 ,E

[
∇xk

log p(xk+1|xk)∇Txk
log p(xk+1|xk)

]
,

Dx,12
k+1 ,E

[
∇xk

log p(xk+1|xk)∇Txk+1
log p(xk+1|xk)

]
,

Dx,21
k+1 ,E

[
∇xk+1

log p(xk+1|xk)∇Txk
log p(xk+1|xk)

]
,

Dx,22
k+1 ,E

[
∇xk+1

log p(xk+1|xk)∇Txk+1
log p(xk+1|xk)

]
.

Using the transition pdf given in (4), the information subma-
trices defined above can be calculated as follows.

Dx,11
k+1 =E

[
FT (xk)Q−1F (xk)

]
, (34a)

Dx,12
k+1 =− E

[
FT (xk)

]
Q−1, (34b)

Dx,21
k+1 =−Q−1E [F (xk)] , (34c)

Dx,22
k+1 =Q−1, (34d)

where F (·) represents the Jacobian of f(·). Substituting these
results into (32b) yields the following recursion.

Ĩk+1 =Q−1 −Q−1E [F (xk)]

×
(
Ĩk + E

[
FT (xk)Q−1F (xk)

])−1

ET [F (xk)]Q−1

+ E
[
I11
k+1(xk+1, Xk+1)

]
, (35)

=Q−1 −Q−1E [F (xk)]

×
(
Ĩk + E

[
FT (xk)Q−1F (xk)

])−1

ET [F (xk)]Q−1

+ E
[
m̄k+1H

T (sXk+1 +R)−1H
]

(36)

Note that the expectations in (36) cannot be taken analytically
for many practical systems and hence they require the use of
Monte Carlo integration methods.

If the initial pdf is taken as px0
(x0) = N (x0; x̄, P0); then,

the initial Bayesian FIM turns out to be

Ĩx0 = P−1
0 . (37)

Thus, the initial PCRLB is given by

J̃ x0 =P0. (38)

B. PCRLB Recursion for the Extent State
The PCRLB for the extent state is shown as J̃Xk and is

given as

J̃Xk =
(
ĨXk
)−1

(39)

where the Bayesian FIM ĨXk for the extent state can be
calculated using the following recursion.

ĨX0 =E
[
∇ξX0 log pX0

(X0)∇TξX0 log pX0 (X0)
]
, (40a)

ĨXk+1 =DX,22
k+1 + E

[
I22
k+1(xk+1, Xk+1)

]
−DX,21

k+1

(
ĨXk +DX,11

k+1

)−1

DX,12
k+1 , (40b)

where I22
k+1 , E[SξXS

T
ξX ] is the FIM for the extent state

given in (28d) and calculated as

I22
k+1 =


d11,11 d11,12 + d11,21 d11,22

d12,11

+d21,11

d12,12 + d0,12,21

+d21,12 + d0,21,21

d12,22

+d21,22

d22,11 d22,12 + d22,21 d22,22


where

dij,lm ,
s2

4
m̄k+1

( [
(sXk+1 +R)−1

]
il

[
(sXk+1 +R)−1

]
jm

+
[
(sXk+1 +R)−1

]
im

[
(sXk+1 +R)−1

]
lj

)
.

The other information submatrices in 40b are defined as

DX,11
k+1 , E

[
∇ξXk log p(Xk+1|Xk)∇TξXk log p(Xk+1|Xk)

]
,

DX,12
k+1 , E

[
∇ξXk log p(Xk+1|Xk)∇TξXk+1

log p(Xk+1|Xk)
]
,

DX,21
k+1 , E

[
∇ξXk+1

log p(Xk+1|Xk)∇TξXk log p(Xk+1|Xk)
]
,

DX,22
k+1 , E

[
∇ξXk+1

log p(Xk+1|Xk)∇TξXk+1
log p(Xk+1|Xk)

]
.



Using a similar method applied for the FIM of the extent state
given in (28d), the information submatrices defined above can
be written as follows.

DX,tu
k+1 =


dtu11,11 dtu11,12 + dtu11,21 dtu11,22

dtu12,11

+dtu21,11

dtu12,12 + dtu12,21

+dtu21,12 + dtu21,21

dtu12,22

+dtu21,22

dtu22,11 dtu22,12 + dtu22,21 dtu22,22

 (41)

where t, u ∈ {1, 2} and

d11
ij,lm , E

[
[∇Xk

log p(Xk+1|Xk)]ij
× [∇Xk

log p(Xk+1|Xk)]lm

]
, (42a)

d12
ij,lm , E

[
[∇Xk

log p(Xk+1|Xk)]ij
×
[
∇Xk+1

log p(Xk+1|Xk)
]
lm

]
, (42b)

d21
ij,lm , E

[ [
∇Xk+1

log p(Xk+1|Xk)
]
ij

× [∇Xk
log p(Xk+1|Xk)]lm

]
, (42c)

d22
ij,lm , E

[ [
∇Xk+1

log p(Xk+1|Xk)
]
ij

×
[
∇Xk+1

log p(Xk+1|Xk)
]
lm

]
. (42d)

The terms defined in (42) can be calculated as given below
(See [32, Section 4.2.2] for a detailed derivation).

d11
ij,lm =

nk+1

4

(
E
[[
X−1
k

]
il

[
X−1
k

]
jm

]
+E

[[
X−1
k

]
im

[
X−1
k

]
lj

])
(43a)

d21
ij,lm = −nk+1

4

(
E
[[
X−1
k

]
il

[
X−1
k

]
jm

]
+E

[[
X−1
k

]
jl

[
X−1
k

]
im

])
(43b)

d12
ij,lm = d21

lm,ij (43c)

d22
ij,lm =

n2
k+1

4

(
c1 (nk+1 − d− 1)

2 − 1
)

× E
[[
X−1
k

]
ij

[
X−1
k

]
lm

]
+ c2

n2
k+1

4
(nk+1 − d− 1)

2
E
[[
X−1
k

]
il

[
X−1
k

]
jm

]
+ c2

n2
k+1

4
(nk+1 − d− 1)

2
E
[[
X−1
k

]
lj

[
X−1
k

]
im

]
(43d)

where constants c1 and c2 used above are given as

c1 = c2(nk+1 − d− 2), (44a)

c2 = [(nk+1 − d)(nk+1 − d− 1)(nk+1 − d− 3)]
−1
. (44b)

Note that the expectations in (43) cannot be taken analytically
and hence they require the use of Monte Carlo integration
methods.

If the pdf of the initial extent state is assumed to be as
follows,

pX0
(X0) =W

(
X0; n̄,

X̄

n̄

)
, (45)

where the constant n̄ and the matrix X̄ are known, the
following initial Bayesian FIM is obtained.

ĨX0 =


d0,11,11 d0,11,12 + d0,11,21 d0,11,22

d0,12,11

+d0,21,11

d0,12,12 + d0,12,21

+d0,21,12 + d0,21,21

d0,12,22

+d0,21,22

d0,22,11 d0,22,12 + d0,22,21 d0,22,22

 (46)

where the terms d0,ij,kl are given as

d0,ij,kl =
n̄2

4

(
c1 (n̄− d− 1)

2 − 1
) [
X̄−1

]
ij

[
X̄−1

]
kl

+ c2
n̄2(n̄− d− 1)2

4

×
([
X̄−1

]
ik

[
X̄−1

]
jl

+
[
X̄−1

]
kj

[
X̄−1

]
il

)
(47)

where constants c1 and c2 used above are given as

c1 = c2(n̄− d− 2), (48a)

c2 = [(n̄− d)(n̄− d− 1)(n̄− d− 3)]
−1
. (48b)

V. PCRLB FOR SEMI-MAJOR AND SEMI-MINOR AXES

In this section, based on the PCRLB matrices J̃Xk calculated
for the target extent matrix X in the previous section, we
obtain the PCRLB for the (lengths of) semi-major and semi-
minor axes of the ellipsoidal target extent. The general PCRLB
theory says that when a parameter θ with posterior CLRB
J̃ θ is transformed with a differentiable, in general, nonlinear
function g(·), the PCRLB J̃ θ̄ for the transformed parameter
θ̄ , g(θ) is given as follows [34, Section 1.2.8.2].

J̃ θ̄ = E
[
∇Tθ g(θ)

]
J̃ θE [∇θg(θ)] . (49)

The semi-major and semi-minor axes of the target extent,
denoted as amajor and aminor respectively, can be written in
terms of the elements of ξX in (12) (under the symmetry
constraint for X , i.e., [X]21 = [X]12) as follows.

a2
major(X) =0.5

(
[X]11 + [X]22

+

√
([X]11 + [X]22)

2 − 4 ([X]11[X]22 − [X]212)

)
,

(50a)

a2
minor(X) =0.5

(
[X]11 + [X]22

−
√

([X]11 + [X]22)
2 − 4 ([X]11[X]22 − [X]212)

)
.

(50b)

The gradients of amajor(·) and aminor(·) given above with
respect to the elements of ξX in (12) can be computed as



below.

∇ξXamajor(X) =
1

2amajor(X)


1
2 + X11−X22

2
√

(trX)2−4 detX

2 X12√
(trX)2−4 detX

,

1
2 + X22−X11

2
√

(trX)2−4 detX

 ,
(51a)

∇ξXaminor(X) =
1

2aminor(X)


1
2 −

X11−X22

2
√

(trX)2−4 detX

−2 X12√
(trX)2−4 detX

1
2 −

X22−X11

2
√

(trX)2−4 detX

 .
(51b)

Using (49), the PCRLBs for semi-major and semi-minor axes
are obtained as below.

J̃ amajor

k =E
[
∇TξXk amajor(Xk)

]
J̃Xk E

[
∇ξXk amajor(Xk)

]
,

(52a)

J̃ aminor

k =E
[
∇TξXk aminor(Xk)

]
J̃Xk E

[
∇ξXk aminor(Xk)

]
.

(52b)

Note that the expectations in (52) cannot be taken analytically
and hence they require the use of Monte Carlo integration
methods.

VI. SIMULATIONS

A. Simulation Parameters
We generate random target kinematic and extent state trajec-

tories whose initial states are drawn from the following pdfs,

x0 ∼N (x̄0, P0), (53a)

X0 ∼W2

(
n0,

X0

n0

)
, (53b)

where

x̄0 = [0 m, 0 m, 500 m/s, 500 m/s]T , (54a)

P0 =diag
[
75 m2, 75 m2, 15 m2/s2, 15 m2/s2

]
, (54b)

n0 =20000. (54c)

The matrix X0 is selected as

X0 = EΛET (55)

where

Λ =

[
a2

major 0
0 a2

minor

]
, (56a)

E =

[
cos θ − sin θ
sin θ cos θ

]
, (56b)

θ =45◦, (56c)
amajor =300, (56d)
aminor =100. (56e)

The true target kinematic and extent states evolve randomly
with the following transition pdfs.

p(xk+1|xk) =N (xk+1;Fxk, GQG
T ), (57a)

p(Xk+1|Xk) =W
(
Xk+1;nk+1,

Xk

nk+1

)
, (57b)

where the matrices F and G are given as

F ,


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 , G ,


T 2/2 0

0 T 2/2
T 0
0 T

 (58)

with T = 1 s. The process noise covariance is set as Q =
σ2
vI2 where I` denotes and identity matrix of size ` × ` and
σ2
v = 1 m2/s4. The parameter nk is selected as nk = 20000

for all k, which corresponds to a case where the target extent
is almost constant. The total duration of the scenario is 100 s.

The measurements are generated randomly in accordance
with the likelihood function (1) where

H =

[
1 0 0 0
0 1 0 0

]
, R = σ2

v

[
1 0
0 1

]
, (59)

with σ2
v = 1000 m2 and s = 1. The simulations are car-

ried out using deterministic number of measurements, i.e.,
the distribution of the number of measurements is given as
pm(m′) = δm(m′) where the notation δm(·) denotes the
Dirac delta function placed at m′ = m. The number of
measurements is set to values m = 5, m = 20 and m = 80
in different experiments.

The PCRLB matrices are computed using Monte Carlo inte-
gration for the analytically intractable expectations mentioned
in Sections III and IV. The number of MC runs to calculate
the expectations is set to be Nmc = 100000.

The ETT filter proposed by Feldmann et al. and described
in Section II-A is implemented to obtain kinematic and extent
state estimates from the noisy measurements generated as
described above. The algorithm is executed on Nmc = 100000
random sets of measurements. The algorithm uses the true
target model parameters except that n0 is set to 10 for
initialization purposes. The initial degree of freedom variable
is set to α0|−1 = 2.1 and the extent forgetting time is selected
as τ = 10 s. RMS errors for the kinematic states, extent states,
and semi-major/minor axes of the extent ellipsoid are obtained.

B. Results

Figure 1 illustrates the RMS position and velocity errors
with the square roots of the corresponding PCRLBs for
different number of measurements. As expected PCRLBs
decrease as the number of measurements increase. This is a
manifestation of the fact that the recursion of FIM is an affine
function of the expected number of measurements. We observe
that the kinematic RMS errors follow the PCRLBs almost
perfectly. This shows that the ETT algorithm of Feldmann et
al. is a nearly optimal estimator for the kinematic states. Figure
2 shows the RMS extent matrix errors along with the square
roots of the corresponding PCRLBs. It is seen that the RMS
errors do not follow PCRLBs as closely as in the case of the
kinematic states, especially for low number of measurements.
Thus, if PCRLB is assumed to be tight, i.e., reachable by a
practical estimator, better estimators can be found for extent
estimation. The results for the semi-major and semi-minor axes
shown in Figure 3 are similar.
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Fig. 1. RMS errors and square-root PCRLB values for kinematic states with
m = 5, m = 20 and m = 80.
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Fig. 2. RMS errors and square-root PCRLB values for extent matrix elements
with m = 5, m = 20 and m = 80.

In the simulation scenario above, the target extent matrix has
the transition density p(Xk+1|Xk) (57b) with the parameter
nk = 20000. This selection, as aforementioned, corresponds
to an almost constant extent along time, i.e., mathematically
we have p(Xk+1|Xk) ≈ δ(Xk+1−Xk) where δ(·) stands for
the Dirac delta function. On the other hand, while obtaining
the results presented above, the extent forgetting time-constant
τ , which is a parameter defined as “a time constant related to
the agility with which the object may change its extension
over time” in [5], was selected as τ = 10 s in the ETT filter.
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Fig. 3. RMS errors and square-root PCRLB values for semi-major and minor
axes with m = 5, m = 20 and m = 80.

Hence, there is a mismatch between the true extent model and
the extent model used in the ETT filter. In order to examine
the effect of τ on the performance of the ETT filter, we
repeated the MC runs using the values τ = 5 s, τ = 10 s,
τ = 20 s and τ = 100 s when the number of measurements is
set to m = 5. It has been seen that the value of τ does not
have much effect on the kinematic estimation performances.
Figures 4 and 5 show the results for the extent matrix elements
and semi-major/minor axes respectively. It is apparent that the
increase in τ yields significant reductions in the estimation
errors. This is a consequence of the fact that the true extent
model and the extent model used in the filter becomes more
and more similar as τ increases. For τ = 100 s, it is observed
that the RMS errors become very close to the PCRLB values
in the steady-state. Hence it can be said that the ETT filter
of Feldmann et al. is almost optimal in the steady-state under
model match conditions though it still seems that there is room
for improvement in the transient behavior especially under
model mismatch.

VII. CONCLUSION

This paper has presented PCRLBs for ETT to be used
when the target extent is modeled using random matrices. The
comparisons between the calculated PCRLBs and the ETT
filter of Feldmann et al. show that this filter
• is almost optimal for the kinematic states;
• is almost optimal for the extent states under model match

conditions in the steady-state.
The discrepancies between the PCRLBs and the RMS errors
of the filter for the extent states during the transients and
under model-mismatch suggest that there might be better ETT
estimators for these conditions.
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